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1. Laue-RISM

Although Laue-RISM calculates the solute-solvent
correlation functions as the same as 3D-RISM, a Laue
representation is imposed on the correlation functions,
which are periodic on the Xy-plane and not periodic along
the z-direction. It is possible to apply the Fourier
transformation technique on the Xy-plane. However, one
must deal with the correlation functions in real space
along the z-direction. This treatment of the correlation
functions allows us to calculate the isolated slab in the
solvent system. In addition, we do not need the canonical
condition , and the total charge of the solvent system is
automatically optimized to screen the -electrostatic
potential of the solute system. This means that we can
obtain the solvent distribution under the grand canonical
condition in the solvent system. For example, if the
solute slab has a +1.0e charge, the Laue-RISM
calculation leads to a solvent distribution whose total

charge is —1.0e.

1.1. RISM equation
In the Laue-RISM calculation, the Laue representation
works to solve the RISM equation. We convert it to the

Laue representation to obtain the equation:

hy(gn'z) = Z f dz' Ca(gu,Z') Xay(gu;Z' - z). (D

a —oo

1.2. Solvent susceptibility

In the right-hand side of Eq. 1, xg,(g),z" — z) is the
Laue-represented solvent susceptibility. It is obtained to
apply the Fourier transformation to 1D-RISM’s solvent
susceptibility ., (g) along g,, as
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where the integration [dg, is performed with the
reciprocal space mesh of the 1D-RISM calculation.
While x,,(g) contains the intra-molecular correlation
function wg,(g), the delta function of w,,(g) causes
huge noise when integrating the right-hand side of Eq. 2.
To avoid this noise, we introduce Gaussian broadening of
gy, (g). We also introduce an analytical integration to

Eq. 2
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if a=y.

1.3. Charge neutrality condition

Deep inside the solvent (far away from the slab
surface), h,(g;,z) becomes 0 and g,(g;,z) becomes
1, that is, the solvent distribution is uniform. Because the
uniform solvent system is always electrically neutral, the
condition about charges g, and densities p, of all the

solvent atomic sites is required as

Z 9o Pa = 0. 4)

The 1D-RISM calculation with the condition of Eq. 4
results in a solvent atomic site (y) electrostatically

screened by the other sites, that is,

25



Laue-RISM, ESM-RISM

Z Qapahay(g =0)= _Qy:
a

(5)
Z Qaway(g =0)= Qy:

where @, is the total charge of a molecule where the
site y belongs. Eq. 5 provides a condition about solvent

susceptibility:

Z anay(g =0)=0. (6)

1.4. Domain of solvent

In Eq. 1, we have to define the domain of total
correlation functions h,(gy,z) . Its straightforward
definition is —oo < z < co. For numerical calculation,
the domain is replaced with —R <z < R, where R is
sufficiently large. It is assumed h,,(g;,z) = 0 outside of
—R<z<R. We call this domain of the solvent
“solvent/slab/solvent”.

If the solute is a slab system, we can define the
domain of the solvent only on the right-hand side of the
slab. Thus, h,(g),z) is defined in a <z < oo (Fig. 1),
which we call “vacuum/slab/solvent”. Although z is
restricted in the right-hand side of the slab, the
integration of Eq. 1 is performed still in —oco < z' < oo,
However, c,(g,2') is not defined in —c0 < z' < a. To
perform the integration, we have to extrapolate
¢, (g, z") outside the domain of the solvent. While
cq(8y,2') is uniform in the xy-plane inside the slab, we
consider only to extrapolate c,(g; =0,z") . The
asymptotic behavior at the left vacuum region of
ce(8;=0,z") needs to have the following form:
c.(gy=0,z") is defined with the slope of the
electrostatic potential b, as

ca(8)=0,2") = co(gy=0,0)
—Baqb(z’' - a),

where —oo < z' < a (see Fig. 2) and b is the gradient of

()

the electrostatic potential of the “solute”. Owing to Eq. 7,
the solvent system completely screens the solute
electrostatic potential and the total charge of the solvent
system becomes opposite to that of the solute system.

Also, summation of the electrostatic potentials of the
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solvent system and the solute system converges to a
finite value when z — Foo. It is worth mentioning that
since h,(g,z) needs to be —1 (and g,(g),z) =0)
deep inside the slab and the left vacuum region, we can
derive a sum rule for the direct correlation function at
this region. At z = a, we can easily show the sum rule as

an(g” =0, a))(ay(g =0)=-1 )

a

1.5. Solvation free energy

The definitions of the solvent free energy are available
not only for 3D-RISM but also for Laue-RISM. However,
in the present work, we implemented only the GF model

using Laue representation as

S
Apsory = E Zpa f dz [_Ca(gll =0,2)
a

©)
1
- EZ he (81, 2) ca (8, 2) |,
8l

where S is the area of the Xxy-plane. Integration in the
right-hand side of Eq. 9 is performed through the domain

of the solvent.

1.6. Solvent charge density
Although the solvent charge density pg;sy has to be

calculated, we approximate it as
psolv(gllfz) = Z qapaha(gll'z)- (10)
a

Because g,(r) = ho(r)+1, when the Laue-RISM
calculation is converged. Additionally, we consider the

charge neutrality condition.
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FIG. 1: Domain of the solvent defined on the right-hand side of a slab.
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FIG. 2: Extrapolation of the direct correlation function (black line) outside the domain of the solvent, using the

electrostatic potential (red line) of the solute slab.
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FIG. 3: The unit cell and expanded cell along the z-axis.

2. ESM-RISM
Laue-RISM calculation

requires an electrostatic
potential of solute in the Laue representation, that is, it is
necessary to replace the electrostatic potential obtained
under the mixed boundary condition (MBC) instead of
under 3D PBC; where MBC means 2D PBC along the
surface lateral direction and the open boundary condition
(OBC) along the surface normal direction. Here, we
apply the ESM method with OBC (vacuum/slab/vacuum),
which deals with an isolated slab system. We put the
domains of the solvent on the right-hand side and/or the

left-hand side of the vacuum regions beside the slab.

Finally, the models become solvent/slab/solvent and
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The structure is

electronic

vacuum/slab/solvent.
optimized with the Laue-RISM calculation as an analogy
of 3D-RISM-SCF. We call this calculation combining the
ESM and Laue-RISM methods “ESM-RISM”.

2.1. Expanded cell

The ESM method defines a unit cell as [—2z,, z,], and
it requires the solute slab to be located around z = 0
(Fig. 3). It is assumed that the electronic wave function
and charge density are localized inside the unit cell, and
both of the functions must be zero at z = +z,. However,
although h,(g),z) of the Laue-RISM calculation

becomes zero a constant value (0 or —1) when z — Foo
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it converges more slowly than the electronic wave
function. Then, we introduced an expanded cell, where
the Laue-RISM calculation is performed (Fig. 3). The
expanded cell is defined as [z;,zz], where z; < —z,
condition is

and zy<zz . If the boundary

vacuum/slab/solvent, z; = —z,. DFT calculation is still

performed in the unit cell [—z, z,].

2.2. Electrostatic potential of ESM method

The ESM method requires the Laue-represented
Green’s function about the Poisson equation:

Glgyz—2) = 5ol (11)
29,

If g, =0, Eq. 11 becomes

G(g =0z-2)= 11m4—n—21'[|z—z I. (12)

91~02g,

Multiplying the Green’s function and charge density and

with convolution, yields the electrostatic potential.

2.3. Diverging term of electrostatic potential

If the solute slab is charged, the long-range
electrostatic potential contains a diverging term, that is,
the first term of the right-hand side of Eq. S46. Taking
the diverging term into account at g, = 0, long-range

part of solute potential becomes

ug (g =0, z) = —q,v"(g, =0, 2)
4 13
n qanFT{lim _ﬂ}, (13)
S g||—>0 Zg”

where qppr 1s the total charge of the solute slab and
ve(g, =0, z) does not have a diverging term.

Substituting Eq. S62 for RISM equation causes

—ﬁz jdz’u’&(g”, z') Xay(gu'zl—z)

a —oo
= —ﬁz f dz’' [—qavL(g” =0, z) (14)
a —oo
9a9pFT 4
t—— {;ﬁglo 20, }] Xay (812" = 2)
28

[oe]

= _ﬁZ _f dZ’[—anL(g“ =0, Z’)]Xay(gll'zl

, |9a49DpFT 4
—ﬁz fdz [ - {é};r_l;lozgl}])(ay(gll'

a —oo

—2)

[oe]

== [ dz'l-auv* (e = 0. 2y (o1 7

a —oo

dorr |, 4m _
—2) =B [ S {;ﬁi%fw}] Zx: AaXay(g = 0).

The second term of the right-hand side of Eq. 14

becomes zero, because of the charge neutrality condition.
Thus, we can neglect the diverging term to solve the

RISM equation.

2 4. Total energy
Energy of the solute slab calculated by DFT with ESM

method is

EDFT

= Eyin + Exc

*3 Z fdz fdz porr (81, 2) G(g), z (15)

gl —oo
—2') pprr (812",
where Ej;, and Ey. are the electronic kinetic energy
and exchange correlation energy, respectively. ppgr is
the charge density of the solute system, which contains
the densities of the electrons and ion cores. The third
term of the right-hand side of Eq. 15 is the electrostatic

energy, and it is expanded as

2 Z fdz fdz porr (81, 2) G(g), z

gl —oo
—2') pprr(8y, 2"

[oe] [ee)

S
-2 Z J-dz fdz,pDFT(gIIJZ) G(g) z

g11#0 —o0 —o00

—2') pprr(8y, 2" (16)

[oe] [oe]

S
+§ jdz jdz’pDFT(gII

—00 —00

g91~0 29,

4T
=0,z2) {llm } porr (8

=0,z")
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S
) fdz J-dZ’pDFT(gII

=0,2) {2r|z — 2’|} pprr (8
=0,z"),
where the first and third term of the right-hand side can
be calculated easily. The matter is the second term,
which includes the divergence of 4m/2g,. And it

becomes

(oo}

S [ee]
2 fdz fdz’pDFT(gII

— 00

- ) {1 } *FT( (1 )
O,Z 1m 1Y ]
" 02g” D 8

2
qprr (. 4m

=0,z") = lim —¢.

) 28 {g||—>0 Zg”}

If the solute slab is neutral (qprr = 0), Eq. 17 becomes
zero and one can define Eppr as a finite number.
However, if the solute slab is charged (qprr # 0), Eq.
S66 is diverging and one cannot obtain Eppr with the
open boundary condition (OBC).
However, the free energy of ESM-RISM method is
defined as
A = Eppr + Musorw, (18)
where Apgp, 1s the solvation free energy defined as Eq.
9. Although direct correlation contributes to calculate
Allsory, its long-range part has a diverging term. To
evaluate the diverging term in Apgop, Co(8)2) is

replaced for —Buk(g,, z) as

S
E Zpafdz ﬁu’&(g” =0,2)
(19)

1
+ EZ ha(g”, z) ‘Bul&*(g”,Z)

8l
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= Szpaqafdz [_UL(gII =0, 2)
a
qprr |, 4w
+ lim —
S {9"*0 Zgu}]

S
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a

=0,2)[ —v(g, =0, 2)]

S
+§ ZpaQade ha(gll
a
qprr |, 4w
=0,z lim —
)[ S {9"*0 Zgu}]

+; Zpafdz [z ha (8, 2) ugy' (g, 2) |,

g#0

where the charge neutrality condition lets the first term
of the right-hand side become zero. The second term and
fourth term of the right-hand side are able to be
calculated easily. The third term is diverging and it

becomes

S
E Z Paa f dz ha(gll
a
Aprr (|, 4w
=0,z lim —
)| 2]

lim )
m —
910 29

q
de psol(gll = 0' Z) [ DZFT

— Asotv dpFT lim 4’_”
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where the definition of the solvent charge density is
applied for the first equality. qg,;, is the total charge of
solvent system. In the Laue-RISM calculation, the charge
density of the solvent system screens the charged solute
slab completely, and one can mention that
Asotv = —Yprr- (21)
Thus, the divergence of the solvent free energy cancels
out that of the energy of the DFT. The free energy A is
always calculated as a finite number even if the solute
slab is charged in OBC, although one cannot define
Eppr or Apg,, by itself.
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